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THE MOMENTS OF THE NUMBER OF POINTS OF A LATTICE
IN A BOUNDED SET

By C. A. ROGERS
University of Birmingham

(Communicated by H. Davenport, F.R.S.—Received 6 January 1955—
Revised 5 April 1955)

A certain average value of the £th power of the number of points of a lattice, with determinant 1, in
a bounded n-dimensional set S is evaluated in terms of the volumes of certain sets of dimensions
n, 2n, ..., kn associated with S, provided # is sufficiently large in comparison to k. The result is used
to obtaln a slight improvement of the Minkowski-Hlawka theorem.

1. Let p(X) = p(x,, ..., x,) be the characteristic function of a bounded 7n-dimensional
set S, which is Jordan-measurable. Then, if A is any lattice, the number of points of A in S is

p8) = 3 p(X). | 1)

The object of this paper is to give formulae for the mean value of {p(A)}* over all lattices
with determinant 1. The exponent £ has to be restricted to be a positive integer such that
max [mz(/c m) +1] <n, (2)

if the present method is to be effective. The mean value is defined in the following way.
Let A = A (a,...,a,_,,0) be the lattice with determinant 1 generated by the points

A = (0,0,...,0,a,07""1),
A, =(0,0,...,0,a,07""1),

.................................

Take the mean value to be the limit

O 2 Y P (3)
if this limit exists. In a later paper* I hope to prove that the mean value defined in thisway
is essentially the same as the mean value over the set of all lattices defined in terms of Siegel’s
invariant measure (Siegel 1945). :

The required formulae for the mean value of the kth power of the number of lattice
points in a bounded Jordan-measurable set § are obtained as the particular cases of the
following result when p(X) is taken to be the characteristic function of S.

* Now accepted for publication in Acta Mathematica (August 1955).

Vor. 248. A.945. (Price 8s. 64.) 29 [Published 20 October 1955
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226 C. A. ROGERS ON THE

THEOREM 1. Let p(X) be a function which is integrable in the Riemann sense over the whole of
n-dimensional space. Suppose that k satisfies the condition (2). Then, provided the integral is interpreted
as an upper® Riemann integral, the mean value (3) exists and has the value

o+ {fpx)ax] + 3 S3(ME)L o) (30 X) aX, .. dX,, (8

w;mg=1C
where the outer sum is over all divisions (v p) = (Vyy...sVyy3 ey o5 M) Of the numbers 1,2, ...,k
into two Sequences vy, ..., V,, ANd fyy <.y fho_y With 1<m<k—1,

1<y, <y, <...<v, <Kk,
1<y <pp<... <php_n<k, (5)
vFE W, i 1<i<m, 1<j<k—m,
where the inner sum is over all mx (k—m) matrices C with rational elements ¢,; with lowest common
denominator q and with 6. =0 if u<v, (6)

and where N(C) is the number of sets of integers a,, ..., a,, satisfying
0<a,<q (r=1,...,m),

Jor which the numbers 2 6, (s=1,..,k—m)

are all integral.
While expression (4) may seem at first sight to be much more complicated than expression

(3), it should be noted that, whereas expression (3) is a mean value of the £th power of a sum
taken over an n-dimensional lattice, expression (4) only involves sums taken essentially over
lattices of dimensions m(k—m) (m=1,..,k—1).

Further, when n is large, the most important terms in (4) are those for which all the elements
of the matrix C'have one of the values 0, -+ 1, and there are only a finite number of these terms.

It is hoped that, despite its forbidding appearance, it will be possible to apply this result
to several problems in the geometry of numbers. In this paper, attention will be
confined to a single problem; theorem 1 will be used to prove the following result, which is
a slight improvement of the Minkowski—Hlawka theoremT when 7> 6.

THEOREM 4. Let S be a bounded symmetrical set in n-dimensional space, not containing the origin and
having a Jordan content V satisfying
V<2+4£[14+633(3)"] L
Then, provided n=> 6, there is a lattice with determinant 1 having no point in S.
I am grateful to Professor Davenport and to the referee for some useful suggestions.

2. Let py(X), ..., p:(X) be £ functions, which are bounded for all X, continuous except
perhaps at X = O, and which vanish outside a bounded region. In this section the integral

f:-.-fﬂpr(A(% 05 Uyyp @) dty . dat,_y (7)

* To obtain the corresponding result with the upper Riemann integrals replaced by lower Riemann
integrals it suffices to apply theorem 2 to the functions —p(X), p(X), ..., p(X).

T See Hlawka (1944).

1 Note added in progf: W. Schmidt, in a paper to appear in part 4 of Mk. Math. Phys. 59 (1955), has obtained
a rather better improvement of the Minkowski-Hlawka theorem by use of a completely different method ;
another improvement, which is even better when z is large, can be obtained by a refinement of the present paper.
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NUMBER OF LATTICE POINTS IN A SET 227
will be considered, for small positive values of », and will be transformed into a certain sum
k
LA (0)) +7+ 3 33705 45 ) (®)
r= p 'u ==

where the conditions on the summations are those given in the statement of theorem 1.
We may choose R>0 so large that

p(X)=0 for r=1,2,..,K%,
for all points X with | X| = max{|x,|,...,|x,|}=R.
We suppose that o is so small that " IR<4.

Let a=a(ay,...,a,_;, ») denote the linear transformation, transforming the point
U = (4, ...,u,) into the point X = «U given by
K| =0l Ky = gy ..., X, =0U,_j, X, =0 " Yo u+... 4o, u,_+u)
Then Aoy, ooya,_q,0) = al,
where A is the lattice of points U with integral co-ordinates. So
pr(A(“la vy Oy, ©)) = pr(“A) :UGEA p,(aU),

forr=1,...,k

Now write U= (up...,u, 1,4, = (0,4,),
X = (%1 ees Xy_p, ) = (X, %,),
. 0 =(0,...,0,0) = (0,0).
Then, if X = «U, we have ‘

X =ou,x, =0 " Yo u +... 40, ju, +u,}
Thus we can write
2, (@U) = p, (0w, 0™ Moy uy + ... 40, u,_ ) +u,}),

and (A(O‘la' ) n 1,(1))) 2 Z pr(wu’a) n+l{alul+ +“n lun 1+un}))

ueL u,=—o

forr =1, ..., &, where L is the lattice of all points u with integral co-ordinates. But the term

P08, 0 a0y, 1))

will vanish unless o™ Uy, U, Fu, | <R,
which implies that [oayu+ ..o, 4, +u, | <Ro1<4,
so that Uyt Uy U, = || U, |

where || x || denotes x —{x}, where {x} is the integer nearest to x. Thus

Pr(A(01s s 2yyy 0)) = ungr(wu’ o™ ey uy 4. a2, ), (9)
forr=1,...,k. :
The results (9) show that (7) can be expressed in the form

J\O 0 ypr(A(al’ *) an—la w)) d“] e da -
1

1k
= 3 f OrIlepr(wu,,a)‘”“Ha W04 Fa,u ) dey..de,_y,  (10)

wmeL,...,uelLJQ
where =, .., u"),
29-2
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228 C. A. ROGERS ON THE

the interchange of the order of integration and summation being justified, as only a finite
number of terms in the sum have the property that they are non-zero for some values of
ay, ..., %, 1 in the range of integration. It is convenient to write

1,k
I(uy,...,u,) :f 1,0,(0)11,,, o g u ., u? ) dey .. de, . (11)
o Jor=

We now regroup the terms of the sum
2 I(uy, ..., w) (12)

wmeL, .., u€el
to give a sum of the form (8); to avoid the use of too many small symbols, we write the
summation conditions in double-line brackets to the right of the summation sign. For any
uy, ..., u, which are linearly dependent, but not all 0, there will be a unique division (v; )
of the integers 1,2, ...,k into two sequences vy, ...,V,, and g, ..., #y_,, with 1<m<k—1,
satisfying the conditions (5), such that the points

u,,...,u,

are linearly independent, while for each j the point u,, is linearly dependent on

U, Uy, ..U,
Then we can represent the points L N |
m
uniquely in the form u, =3cu, (j=1,.,k—m), (13)
i=1

Here the numbers ¢;; will be uniquely defined rational numbers. Let C denote their matrix
and let ¢ denote their lowest common denominator.

Conversely, given any division (v; x) of this form and any matrix C with rational elements
satisfying the conditions (14), there will be points u, ..., u, satisfying the conditions (13),
ifu,,...,u, can be chosen to be linearly independent points such that the points

have integral co-ordinates. Thus

k w
Zuwel, .., wmel]l(uy,...,u;) = qﬂr(o) +J+(E) zl% J(v; u; C), (15)
r= vip q=
where the conditions of summation are as in the statement of theorem 1, where
J = Z[dim{uy, ..., u} = k] I(uy, ..., uy), (16)

: dim{u,,...,u, } =m,
and J; pu; C) =2 m

. I(ay, ..., up), 1
cl'juViGL (]:: ]_’.”,k_m> ( 1 k) ( 7)
i=1
and where in I (uy, ..., u;) the points u,,,...,u,, . if any, are to be regarded as defined in

terms of u,,...,u, by the equations (13). Here we use dim{a,,...,a,} to denote the
dimension of the linear space generated by a,, ..., a,.

It is clear from (10), (11) and (15) that we have expressed (7) in the required form (8),
where J and J(v; u; C) are given by (16), (17) and (11).
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NUMBER OF LATTICE POINTS IN A SET 229

3. The aim of this section is to show that, provided o is sufficiently small, the (n—1)-
dimensional integral 7 (u,, ..., u,) given by (11) can be expressed in terms of the division
(v; #) and the matrix C associated with the points u,, ..., u, and a certain m-dimensional
integral.

In order to simplify the notation, we confine our attention to the case when

We also write (U, 5,) = plouls .., 0ul 0™ 1|6,
and By =oayu’+ ... +a,_u,

forr=1,...,k. Then

1
I(uy, ..., uy) zf I’Ipr(")ura(l)—"+1 ey ul’+...+ap_yu?, ) dey ... da,_,

0 0 r=1
1
[ T8 o (18)
Since C'is defined so that wu,,,, = Z (s=1,..,k—m),
it follows that Pris = %c,-s,b’i (s=1,...k—m).
i=1

Thus 2 ) = [ [ T 8) T (Wi S08)dordar (19)

Now 18,11 = llaq e+ ... F oy u® | (r=1,...,k)

is periodic in ay, ...,«,_; with period 1. So the integrand in (18) and (19) is periodic in
%y, -..s &,y With period 1. It follows that I(uy,...,u,) is the limit of the mean value of the
integrand

F(ﬂl? s m) = ﬁ ¢r(ur3 ﬂr)kﬁ ¢m+s(um+s5 i=§l cisﬂi)

taken over any suitable region, in the space of «y,...,®,_;, which becomes large in an
appropriate way. Since uy,...,u,, are linearly independent, we may suppose that the
determinant of the matrix G
ud  (i,j=1,...,m)

does not vahish. Consider the transformation from the variables ay, ..., «,_, to the variables

0, =aquld+...4+a, 4, (r=1,...,m),

0, =a, (r=m+1,...,n—1).
This is a non-singular transformation. So the region defined by the inequalities

[0,|<® (r=1,..,n—1)
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230 C. A. ROGERS ON THE

is a parallepiped in the space a,, ..., ®,_;, which becomes large as ® tends to infinity. Thus

f ...fF(ﬁl,...,ﬁm) da ... da,_,
I(ula-“’uk) :(l)l_g}o L0 |6 q d
fwr|<®...f a ...da,_,
JG f@’ 0,16, ...d0,_,
= lim ==° o

0> f f do, ... do

— lim ( 2®-f f )do, ...do,.

Q—>©

In this formula the integrand

F(y e 0) = T ,0,0) T b0 3 06)

= rijlqé’(u” ” 0,. H) §n¢m+s( L} S z Cis z

is clearly periodic in 6, ..., 0,, with period ¢g. Consequently

- -3
I(uy,...,u) =§1,;f1 f; F(0,,...,0,)dd, ...dd,. (20)

Our next object is to prove that, provided w is sufficiently small,

-t o
-l,ﬁfq fq F(0,,...,0,)d0, ...do,,
q-J-3 -3

=-A;—(n§—)w<n-nmfw... M]_‘[p,(wu,,g)l_[ﬁm+s(wum+s,zc,sg)dgl dE,, (21)

where N(C) is defined as in the statement of theorem 1.
We first note that both sides of (21) will be zero, if any co-ordinate of any one of the points

Wl ..., 00
exceeds R. So it suffices to prove (21) under the assumption that
|, | = max{[uf’], ..., |42, [}< R0, (22)

for r =1, ...,k. Now the elements ¢; of C are determined uniquely in terms of u,, ..., u, by
the equations

u,., = Z (s=1,....,k—m),
since the points u,, ..., u,, are linearly independent. Further, if
ud (5,7 =1,2,...,m)
is a non-singular m x m minor of the matrix
w (i=1,..,m;j=1,...,n—1), (23)
it is clear from Cramer’s rule that any element ¢;; of C can be expressed in the form

¢ = tdet (u?) [det (),
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NUMBER OF LATTICE POINTS IN A SET 231

where the matrix (#{7?) is a minor of the matrix
u (i=1,..,kj=1,..,n—1).
Thus ¢, is a rational number, whose denominator is a divisor of the determinant
| det (u9).
So the lowest common denominator ¢ of the elements ¢;; is a divisor of the highest common
factor of the determinants of the 7 x m minors of the matrix (23). Thus, in particular,
0<g<|det («) | <m*™max | uf |™

Sism
1<j<n—-1

<mim max |y, |™
1<i<m

<md"(R/w)™. (24)
It also follows that | g¢;s | < | det (i) | <mdm(R[w)™. (25)

We return to the study of the integrand F(6,, ..., 8,,). Itis clear that this will be zero unless
0,,...,0, are all near to integers; indeed

F@,...,0,) =0
unless w0, ||<R for r=1,...,k,

m
where we now write Opes =260, (s=1,....,k—m).
i=1

So, if F(0,, ...,8,,) is not zero there will be integers a,, ..., a, such that
|0,—a, | <R 1,

for r=1,...,k. We suppose that Rw""!<{, so that the integers a4y, ..., q, are determined
uniquely by 4, ..., 0,,. Then we have

. 0<a,<q for r=1,...,m.
Also, using (24) and (25),

< + Rw!

m m
Qs 21 Cis 0| < | Oppas — 21 Cis @
i= i=

= gcis(ﬁi—'ai) + R !
i=1
<(mmax |, |+1) R !
im m
<v(m.m (R/w) —l—(_])an_1

q
im m
e R
(m+ 1) m%mRmHa)n—m—l 1
—_ < =,
q 29

provided £<zn—1 and o is sufficiently small. Since the rationals ¢;, have common denomi-
nator ¢, this inequality implies that

m
Apys = Elcisai (s=1,....,k—m).
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232 C. A. ROGERS ON THE

Conversely, if a,, ..., a, are any integers satisfying
0<a,<q (r=1,...,m), }

Qs = Zzs, (s=1,...,k—m), (26)

then there will be a definite contribution to the integral (20) from the set of points 0, ..., 0,

with ldr——ﬁr!<—%— (7'= 1,...,m). (27)
This contribution will be
a;+3 am+§
—J f g, dé,...dd,
=—,,,f' f F(Oy+-ay s Op-a,) 0y .. 46,
q7J -3 -3

3 I m k—m
= ;ﬁ é. ot 3 ]-_:E ¢r(ura r+ar) ].—.! ¢m+s (um+s’ z czs 01 +am+s) d‘91 vee Clﬂm

= 'l_fi % ¢r 7 r H ¢m+s( m-+s? ién:l Cis ﬂz‘) d‘91 e dﬁm'

/SN U Qs |
Mm@ if |0]<4,

it ,0) =
Write ¥,(u,0) { o it |8]>1

Then the contribution becomes

——f f_ Hlﬁr(ur, 1:[¢m+s( mts Z Cis z) ...dd,,.

But the condition 11¥,(n,0,) %0

implies that |0, | <Rw™ 1 (r - 1,...,m),

so that, using (25), l S ¢, 0;|<mmax | ¢, | Ror1<4,
and ¢m+s( m+sd Z Cis z) ¢m+s(um+sa ii cisﬁi)
fors=1,...,k—m. Hence the contribution is

)] 0000 T V(0 3600) .- 00,

1 f f I_.[ Ior(wur’ w—n+lﬂr) ]._.[ pm+s(wum+sa z 6‘ w-n+lﬁi) dal sev dﬁm

w0 =1

(wn-)f - Hﬂr(wuw r)Hﬂmﬂ(wumH, 3 0,6) &y .. 5,

o r=1

Thus the total contribution to the integral

] ~1
I(u,,...,u,) :5,;[: f_: F(0,,...,0,)do, ...do,,
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NUMBER OF LATTICE POINTS IN A SET 233

from the different ranges of variation for ¢,, ..., 0,, of the type (27), is

_Mﬁ@w(n—l)mfiow. ° ]._-[ pr(wurﬂ g )kfflpm+s(wum+sﬂ Z gz)dgl oo dgma

q —o r=1
where N(C) is the number of sets of integers ooy a,, satisfying the conditions (26). Since

the conditions (26) determine the numbers a,,,,, ..., a; uniquely in terms of the numbers
ay, ..., a,, it is clear that N(C) is the number of sets of integers q,, ..., a,, with

0<a,<q (r=1,...,m),
for which the numbers 2 ¢t (s=1,....,k—m)

are 1ntegra1 Thus this definition of N(C) is in conformity with that given in the statement
of theorem 1, and (21) is established.

In the general case when the division (v; u4) associated with the points u,, ..., u, is not
necessarily of the special type considered above the result takes the form that

I(a,...,u;) = N(C) o™= l)mf_w...

provided o is sufﬁmently small. -

We note that we have proved that I(u,, ..., u,) will be zero for the special type of division
unless the conditions (22), (24) and (25) are satisfied. In the general case it is clear that
I(u,, ..., u,) will be zero unless

Hpv,(wuv,’ v.) Epﬂj(wuﬂj’ 'glcijgvi) dgvl e dgvmi (28)

—o0 j=1

v, |<Rlw (i=1,...,m), (29)
0<g<mt" max | u,, |"<md"(R/w)™, (30)
1<i<m
and | ger |[<mIm(Rlo)™  (i=1,..,m;5s=1,....k—m). (31)

In the particular case, when the points uy, ..., u, are linearly independent, it is easy to see
that the result (20) holds with m = kand ¢ = 1. Thisleads without difficulty to the result that

3 b3
I(uy,...,u) :f_%...J_%F(HI, o 0,)d0, ... d0,

—wes[” [ TIp(ou,6) dg, .. de, (32)

provided o is sufficiently small. Here it is clear that I(u,, ..., u,) will be zero unless
|u,|<Rlo (r=1,...,k). , (33)

4. This section will prove two elementary lemmas about lattice poinis. These lemmas will
be of use later.

LemMA 1. The number of sets of points 0, ..., 0, satisfying the conditions that
|u, |[<R/o, ..., | v, |<R/o,

and that v, ..., ,, are linearly dependent, is at most

2 (m—1)n
m[1+—‘—:—?:| . (34)

30 Vor. 248. A,


http://rsta.royalsocietypublishing.org/

JA '\

/ y

A

a
)\
LU

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

V. \
AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

234 C. A. ROGERS ON THE

Proof. Ifuy, ..., u,, are linearly dependent, then one of these points is linearly dependent
on the other points. So the total number of sets of points satisfying the conditions is at most
mN, where N is the number of such sets in which u,, is linearly dependent on uy,...,u,,_;.

Suppose now that u,, ..., u,,_, are fixed and thatu,, is linearly dependent on u, ..., u,,_;.
We may choose vy, ...,v,,_; so that the matrix

) (by=1,...,m—1)
has the same rank as the matrix

u? (i=1,..,n—1;7=1,...,m—1).
Then once the co-ordinates um (t=1,...,m—1)

have been fixed, the point u,, will be determined by the condition thatitislinearly dependent
onuy,...,u,_ ;. Sothe number of possible points u,,, when u,, ..., u,,_; are fixed, is at most

m—1
[
w

(n—~1)(m-—1) m—1 (m—1)n
IV

Hence N [1 + "

This gives the required result.

LemmA 2. Suppose that a,, ..., a,,, q are positive with
)20y 2 Uy
that by, ..., b,, are integers with (b, ..., b,) = 1 and that

0 (1<i<m),

and w; (I<i<j<<m)

are real numbers. Then the number of sets of integers u,, ...,u,, satisfying the inequalities

aj<uj+i<§acijui<ocj+aj (j=1,...,m)

and the congruence f‘bi ;=0 (modgq)
i=1
is at most (1+a) (1+ay) ... (1+a,_;) (1+%’). (35)

Proof. The result is trivial when m = 1, provided (4,) is interpreted as | b, |. Suppose that
the result is true when m has any value less than the value under consideration. Write
(b,,,9) = d. Then uy, ..., u,,_, satisfy the congruence

m—1
> bu;=0 (modd).
i=1

Ifo = (4y,...,b,_,) is greater than 1, then 4 has no factor in common with d (such a factor
would be common to 4,,...,8,,), and so the factor b can be removed from the congruence.
Thus, using the result with m replaced by m—1, the total number of possibilities for
Uy ...y Uy, 1S at most

(1+a,) (1+a,) (1 +‘—‘—";l:—1).
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Now when uy, ...,u,_, are fixed, the inequality restricts «,, to an interval of length a,,
while the congruence determines u,, modg/d. So for fixed u,,...,u,_, the number of
possibilities for «,, is at most '

a
14-om,
q/d
Hence the total number of possibilities for «, ..., u,, is at most

(1+a) (1+a,) ... (1+am_2)(1+9_md;1)( +q/a’)

a

| — m\ _ (g L—l__m)

But (1+ ; )(1+ /d) (1+am_1)(1+q) d 1)( )
<(1+am—l)(l+a?m))

since a,,_;>a,, and 1<d<g. Thus the number of possibilities is at most the number (35),

and so the result follows by induction.

5. The object of this section is to show that, as o tends to zero, the sums J and J(v; u; C)
tend to certain integrals. As in § 3 we confine our attention in the first place to the case when
the division (v; g) is given by ) —1,... v =m,

b=m+1,. ., =k
We have, if v is sufficiently small,
dim {ul, ooy um} ==

m’
Jw; u; €) = ZHZC wel (j=1, m,k_m)ul(ul, cees Ug),

ij i

where mH—ch ;. (s=1,..,k—m),
and
I(uyyu) =~ (C) oo™ RIS Hﬂm+s<“’ 30Uy 3.0 S c6) d .. dge
Hereu,,,,, ..., u, are unnecessary; it is convenient to write
F _ N(C) © k—m m m
(Xl’ ’xm) - _q_m_ f_w'“ _OO;I.:.[/)r( &) gr) Hpm+s(i=zl Cis X iglcz‘sgz’) dgl dgm’ .

so that dim{u,,...,u,} =m,

Ty g O — (n—Dym
J; p; C) ZH.ZC wel (=1, ...,k—m)ﬂw F(ouy, ...,0u,,).

ij i

Now we have assumed that the functions (X, ..., pk(X) are bounded for all X, con-
tinuous except perhaps for X = O, and vanish outside the region given by

| X |<R.
Hence the function F(x,,...,X,,) is a bounded function, continuous in the m(n—1) co-
ordinates of the points X, ..., xm, except perhaps at the points of, at most, £ linear subspaces

of dimension less than m(n— 1), and which vanishes outside the region given by
|x,|<R,...,| X, |<R.
It follows, in particular, that (x,, ..., X,,) is integrable in the Riemann sense over the whole

space of dimension m(n—1). 7
30-2
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So, by lemma 1, we have

dim{u,,...,u,}<m,
o= DnE(guy, ..., 04,

:0(2[[ dim{u,,...,u,}<m, ]]w<n—1>m)

|u, |[<R/o,...,|u,|<Rw
— O(w—(m—l)n+(n—l)m) — O(wn—m),

i i

z _zc wel (j=1,....,k—m)

provided o is sufficiently small. Thus
wel,..,u,el,

Jw; u; €) =0(1)+Z % c;uel (j=1,...,k—m)

o UmE(on,, ..., 0u,,)  (36)

as w—>0.
Let us regard the set (u,,...,u,,) of points u,, ..., u,, as a point in the space of (n—1)m
dimensions with co-ordinates
(@, w2 U, U,
Then the conditions wel,..,u,el,

‘Zc wel (j=1,...k—m), (37)

ij i

restrict the point (u,, ..., u,,) to lie on a certain sublattice of the lattice of points with integral
co-ordinates. Let D be the determinant of this sublattice. Now F(Xx,, ...,X,) is a function
which is integrable in the Riemann sense over the whole of this space. So, by the theory of -
Riemann integration,

wel,..,uel,
Ec wel (j=1,....,k—m)

Zj 2
-7 f fF(xl, Vdx, ...dx,, (38)

as v —> 0, the integration being over the whole space.
Now the conditions (37) can be split up into the equivalent system of the conditions that,
fort=1,...,n—1, the co-ordinates D
(4

W UmE(gu, ..., 0u,,)

5 eeey U
. m il
are integers and the numbers Y ¢ uf (s=1,...,k—m)
i=1

are integral. Thus the sublattice of determinant D is the Cartesian product of (n—1)
sublattices of the lattice of points with integral co-ordinates in m-dimensional space. Each
of these sublattices has determinant d= g/,

where N is the number of sets of integers ,, ..., #,, with

o0<u,<q (r=1,...,m),
for which the numbers Z Gy (s=1,..,k—m)

are integral. Hence N = N(C) and
D — (N (39)
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It follows from (36), (38) and (39) and the definition of F(x,, ...,X,,) that, as 0 —0,

J(v; u; C)—»{-]\Lq(mg)}n_lf...fF(xl, v X,) dx; ... dX,

(N[ [ T 508 T S ks S 8) ], . x,

W =0 =1

= (B [ [T10%) e 3 00X 0, . X,

For the case of a general division (v; ), we obtain the corresponding result that

73 5 0+ [ [ 112 X) T 3 0X) X, .. X, (40)
as w— 0. Further, the same method shows that
I [T 0X,) 4, ... dX, = T1{ [/, %) aX] (41)

as w—0.

6. It is clear from the results (8), (40) and (41) that some progress has been made
towards a proof of a result similar to theorem 1; but it is also not surprising that the rest of
the proof should depend on an investigation of the uniformity of the convergence of the
series (8). The object of this section is to obtain a bound for J(v; x;C). Asin §§ 3 and 5, we
confine our attention in the first place to the case when the division (v; ) is given by

vw=1,...,v,=m,
bo=m+1, ., =k
We have, if 0 <w<w,, where v, depends only on z, £ and R,

dim{u,,...,u,} = m,

J; pu; C) = Hz el (=1, ke m)HI(ul,...,uk),

Wy = E ¢ U; (S=19“'3k_m)9

where

and

Iy o) =5 00" (o, ) T (030w, 3 ) ..

s |
NOW I(ul, ceey uk) - 0
unless |u, |<Rlw (r=1,...,m),
m
.zlcisu,- <Rlw (s=1,....k—m),

and in any case :
N(C) —’1 R R m ;
I(ul,...,uk)=0(7n—w<n >mf Rf S 06| <R (s=1,...,k——m)}]d§l...d§m),
- ~rlL|i= '

where the constant implied by the O-notation depends only on 7, £, R and the maximum
attained by the moduli of the functions p,(X), ..., p,(X). Write

¢= max |[¢;|.
i=1,..
J=1, ... k ‘m
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We may suppose without loss of generality that

Cll == C.

ey k—m)
R

C .

Then the conditions m.o
f CisSi <R (S = 19

imply that ‘igl‘{- 2 élg
So, for fixed &,, ...,§,,, we have z

J‘R H m
C
—rlll & is i

l(ul, XYY uk)

(s=1, ...,/c—-m)]]d§1<2Rmin[1,—i—].

- o(ivgl wr=Dm min [161])

Thus
This result shows that

Jw; u; C) =0 ﬁc,.ju,.el;

<R/w

|3

dim{u,, ..
|u, |<R/w, ..

(j:l:

W} =m,
* 'uml <R/w9

ey k—m),

H

u;eL,
|, |<R/w,..

(]—1 oy k—m)

-

,uel,
-, | <R/,

}
=0 A%(—glw("‘l)mmin [1, -cl—] !

But ‘wel,..,u,el,
[a, ]<R/a),.. . |u, | <R/w,
T Souel (-1, Sk—m), |1
Z ¢ w<Rlo (j=1,...,k—m)
T u?[<Rfo,..
noly zc #? =0 (mod 1)

z czj ug»
i=1

b

zzjz

) |u; | <R/w, ..., | u, | <Rov,
_.( ) :ZcijuiEO(mdd ) (=1,

<Rlo (j=1,..

m.
_zlcijuieL (j=1,...,
L=
m .
Zlcij U < (=1,
Li1=

| 4" | <R/w,

(j=1v..k—

<Rlw (j=1,...k—

vy k—m),

k km)

N<C) o= D™ min [1 ]

]g.-_m), 1}.
yk—m)
T (42)
m), 1
m)
n—1
1

(43)
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NUMBER OF LATTICE POINTS IN A SET 239
where N is the number of sets of integers ¥, ..., %, satisfying the conditions
|u, | <R, ..., |u, | <R,

%cijuiso (modl) (j=1,....,k—m),

i=1

m
lEcijui
i=1

(44)

<Rjo (j=1,...k—m).

It is convenient to write

A A

Gs=q6 (G=1,..,m;s=1,...k—m).

Then, since the numbers ¢, are rational numbers with least common denominator g, it is
clear that the numbers g and ¢;, (1 = 1, ...,m;s = 1, ...,k—m) are integers with no common
divisor greater than 1. It follows from the theory of elementary divisors* that there are
integers A, A, ..., 4;_,, such that the integers

SOCIETY

k—m ’
bz':’IOq"l_ zl/ls%‘s (Z: 1,...,m)
. 5=

have no common factor exceeding 1. Then the congruences in the conditions (44) imply that

OF

m m k—m k-m m
2 bu=3 El/lsqz-s ;= 2 A2 6,4, =0 (modg).
i=1 3 s=1 =1

i=1g=

Further, the inequality conditions in (44) imply that

|4, | <R, ..., |4, | <Rlo,

<R/(we).

U+ % iy,
i=2 €
Consequently, by lemma 2 of § 5, the number N of sets of integers satisfying the conditions
(44) satisfies —1
(2 1+ 2, (2]
w wq weq

= O(w‘mmin[w+1,w+—1— ) (45)
q ¢q

It is convenient at this ystage to note that, if / is a large positive integer, and q,, ..., q,, are
integers satisfying

) §

S

0<a,<lg (r=1,...,m)

SOCIETY

for which the numbers % ¢, (s=1,..,k—m)

are integral, then these integers satisfy

0<a,<lg—1 (r=1,...,m),

OF

S5,4,=0 (modg).
i=1

* See, for example, the lemma on p. 635 of Mahler (1949).
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It follows from lemma 2, that the number /»N(C) of such sets of integers satisfies
mN(C) < (lg)m! (1 I l)
- As I may be taken to be arbitrarily large, it follows that
N(C)<gm 1. : (46)
Combining the results (42), (43), (45) and (46), we obtain the result that
n—1
J; u; C) = O(éw("“l)mmin[l, —1~] (a)"” min I:w+;, o+ 1 } )

‘.
= OGmin[l,cl:I{mm w+— a)—l——l— }n—l).

¢q
But, by (29) and (31), it is clear that I(u,,...,u,) and consequently J(v; #; C) vanishes
unless g<mn(Rjw)"
and ge<mi™(Rjw)™,
. . 1 1
i.e. unless w<R,/mmin [&‘17%’ W:I .

So, in obtaining an upper bound for J(v; #; C), we may suppose that this condition is
satisfied. Thus

J; u; C) = O(—l- minl:l 1:Hmin —]— ! o ! }n-—l)
2 q ¢ gt " q’ (ge)''™ " gc
1 . 1 .1 1 n—1
= O(ZI min [1,0—] {mm [‘?/T"’_ﬂ(‘]c) l/m]} )
1\ 1+{e=1/m} o 1\ 1+ {e—1)/m}
ol ) @

It is easy to check that this estimate remains valid in the case of a general division (v; 4). It
should be remembered that this estimate is valid provided w <w,, where w,>0 and depends
only on 7, £ and R; while the constant implied by the O-notation depends only on 7, £, R and
the maximum modulus of the functions p,(X), ..., p(X).

7. Inthissection the estimate (47) is used to show that the sum on the right of the formula
k
[of TaA G ety 0)) doty ity = (T 0N T 3 3 3 T0505C), (48)
r=1 r= Vi p) g=
proved in § 2, is uniformly convergent for 0 < <w,, provided

max [mz(k m)+1]<n. (49)

m=

Since, for each value of m with 1<m<<k—1, there are only a finite number of divisions
(v; p), it suffices to prove the uniform convergence of the sum '

S 3J(; 4; C)
a=17¢C

for each division (v; ).
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Sincew does not appear in the estimate (47), valid for 0 <w <w,, and the constant implied
by the O-notation is independent of w, it clearly suffices to prove the convergence of the sum

2 2 M(C), (50)
q=1C
1\ 1+{m=1/m} 1\ 1+{n-1)/m}
where M(C) = (—) min [1, (—) ]
q ¢
For a fixed ¢ the number of matrices C with ¢<1 is at most of the order
O (gmt=m). |
So S M(C) = O(gmk=m g=1~{n=1/m))
egl
— 0(q—l-—[n—l—m2(k—m)]/m),
and S S M(C) (51)
q=le<cl
is convergent provided m?(k—m)+1<n. (52)
For a fixed ¢ and a fixed integer / with /> ¢, the number of matrices C with ¢ = I/q is at
most of order O((oq)m=m-1).
So > M(C) = O((cq)m#=m=1(cq)=1-n=1/m)
c
c=llq

=0 (l—Z—[n—l-ma(k—m)]/m) .

Thus, provided the condition (52) is satisfied,

§ 3 M(C) = O(g~1-tn-1-mXk=mV/m)_
I=q+1 Cl'/
c=llq ©
and the sum >
q=1

™M

M(C)

va

is convergent.

Combining this result with the result that the sum (51) is convergent, we see that the sum
(50) is convergent. This completes the proof that the sum on the right-hand side of (48)
converges uniformly for 0 < <w,, provided the condition (49) is satisfied.

8. This section proves a theorem that clearly contains theorem 1 as a special case.

THuEOREM 2. Let p,(X), ..., po(X) be functions which are integrable in the Riemann sense over the
whole of n-dimensional space. Suppose that k satisfies the condition

r_nax [m*(k—m)+1]<n. (53)

m=1, ...,k
Then, provided the integral is interpreted as an upper Riemann integral, the mean value
f . H/’r(A (@15 @y, 0)) doy ... da, (54)
=1
exists, and, as w—> 0, tends to the limit

10+ [r X aX+ 3 3 5(*

(u;v) g=1C

) J J,I:‘['o"' X’)jljnpﬂj(élcz’jxi) dX,...dX,, (55)

31 Vor. 248. A.
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242 C. A. ROGERS ON THE
where the outer sum is over all divisions (v; f) = (Viy+eesVyy3 fhis «oos My—y) Of the numbers 1, 2, ..., k
into two Sequences vy, ..., V,, And fyy ...y iy With 1<m<k—1,
1<y, <y, <... <y, <k,
1<y <pp<... <ty <k, (56)
v i 1<i<m, 1<j<k—m,
where the inner sum is over all m x (k—m) matrices C with rational elements with lowest common denomi-
nator q and with

Cis =0 Zf :us<Via (57)

and where N(C) is the number of sets of integers a,, ..., a,, satisfying
0<a,<q (r=1,...,m), (58)
Jor which the numbers 2 ca; (s=1,...k—m), (59)

are integral.

Proof. First consider the case when p,(X), ..., p,(X) are also assumed to be continuous,
except perhaps at X = O. Then, by the work of the preceding sections, the integral (54)
exists for all v with @ >0 and has the value

Hﬂr(0)+J+ Z Z 2 ;w5 ),

V /I« q—
provided w<w,. Further, this sum is uniformly convergent for 0 <w <w,. Again, as v—0,
we have

k
11 [r.(X) 4,

Jw; p; C (N(C))f fnp,,, Hpﬂj(ZC X,.)Xm...de.

So it follows, in this case, that the integral (54) tends to the value (55) as w—0.

Now consider the case when the functions p,(X), ..., p,(X) are Riemann integrable and
non-negative. Thenitis possible, for every positive 1nteger [, tofind functions ¢ (X),...,o¥ (X)
which are bounded, continuous except perhaps at X = O, which vanish outside a bounded
region and which satisfy

cPX) =P (X)=...2p,(X) (r=1,...,k), (60)

for all X, cP(0) =d?(0) =...=p,(0) (r=1,...,k), (61)
and f s9(X) dX - f 0 (X)X (r=1,...k), (62)
as [— o0, Then, using the result of the last paragraph, for each positive integer /,

lim sup ]_[p, (s eees @pq,)) doy ... da,_y

w—>+0 0 r=1

< lim H‘T(D(A(“la- o Uy 0)) daty .. doty
w—->+0 0 r=1

_ f[g;n(o)ﬂﬁ /9 (X) dX

+y zz( )f JHU"’X)HU‘D(E ’ ) LdX,. (63)

;) g=1C
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Note that (60) implies that this sum will be uniformly convergent for the different values of /.
We shall show that (60), (61) and (62) imply that, as / tends to infinity, each term tends to
the corresponding term of the sum (55). It is clearly sufficient to consider a term corre-
sponding to a division (v; ) = (1,...,m; m+1,..., k). Then the difference between corre-
sponding terms will be a constant multiple of

J JH‘T(D X,) H ng)ﬂ(g ciin) dX, ...dX,

_ f f 11 p.(X) ’ij’ ,;mﬂ(;z"jl ciin) dX, ...dX,,

= g f-uf/h/’z e P 0P —py ooy ... 0P dX, ... dX,,

where we have omltted the arguments from the functions for simplicity. Now, if 1 <<¢<<m,
we have

0<f fﬁlﬂz o —pp o o8y .. 0P dX L X, ;

( fﬂ dX ) (fa'(l)(X ) dX — fﬂ, dX) (r;[:];H f Uf.l)er) ak-m,

where ¢ is an upper bound for the functions 7,,,, ..., 5. In the special case when m<¢<k

and . L —0
Cre-m) = Catt-m) = oo+ = Cmt-m) = U5

we have, by (61),

f f/’lﬂz i~ 1{‘7(1)—%}‘7(0 0y ... of dX; ... dX,
— [ fo1p2-pir (0P(0) =p (0N} o1 085 .. 0P X, ... X,
= 0.

In the case when m<<¢<k and at least one, say cl(, > Of the numbers ¢;;_.ys «++5 Copiz—m 15
not zero, we have

0<f fﬂlﬂz o —pY o o, 0P dX L X
<o [pa(Xa) oK) (783 i X) — S 0 X0, . X,
= 0 ey (1T [(X) aX) ([0 (%) aX— [p(X) ax),

r=2

where p is an upper bound for the function py- Thus it follows from (62) that the integral

f-~-fp1pz oo o0 —p} o108 . 0P dX L X

tends to zero as / tends to infinity for each ¢ with 1<<¢<m. This shows that the differences
between the corresponding terms in the sums (63) and (55) tend to zero. It follows from the
uniformity of the convergence of the sum (63) that this sum tends to the sum (55) as / tends

to infinity. Hence the left-hand side of the inequality (63) does not exceed the sum (55).
31-2
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A similar argument, based on approximation to the functions p,(X), ..., p,(X) from below,
shows that

1 1k
liminff f [Tp, (Ao, ..y yq,0)) day ... do,_,
0 r=1 a :

w->+0 J o

is not less than the sum (55). Consequently, both the limits

lim ]'Ipr (A(ag, ..y, 1)) de ... da,_,,

w—>+0 0 r=1
(64)
lim I'_[p,(A(ac,, o y_1,0)) day ... da,_;,
- -+0 Yo YO r=1

exist and are equal to the sum (55).

Now, in the general case when p,(X),...,p,(X) are any functions integrable in the
Riemann sense over the whole of space, each function can be expressed as the difference of
two non-negative Riemann-integrable functions. Applying the results of the last paragraph
to the different products of these functions and combining these results with suitable signs,
it is easy to see that the limit (64) will exist and have the value (55). This proves the theorem.

It is perhaps worth remarking that the above method, with a few minor modifications,
suffices to prove a more general result, which can, with the notation introduced in the
beginning of § 2, be stated in the following way. '

THEOREM 3. Let p(X,, ..., X,) be a Sunction, which is continuous in the nk-dimensional space of
points (X, ..., X,), and which vanishes outside a bounded region of this space. Suppose that k satisfies

the condition max [mz(k-—’m)‘—'{—l] <n. (65)
m=1,...,k
. 1 1 :
Then the limit lim f f S paU,....aU,) da ... da, (66)
w~->+0J 0 0 U,eA UreA

exists and has the value

.,0)+f...fp X, X,) dX, ... dX,
3 zz(Nw))f f(zdﬂxi,...,Z"ld;kxi)dxl...dxm, (67)

w; [4) q*'l D
where the outer sum is over all divisions (v; i) of the type described in the statements of theorems 1 and 2,
where the inner sum is over all m x k matrices D with mtzonal elements with lowest common denominator
q and with

di,,j = 8,-]- .(z =1, ...,m;.] =1, ...,m)., } (68)
dy =0, of w<v; (i=1,...,m;j=1,....k—m),
and where N(D) is the number of sets of integers a,, ..., a,,; satisfying
O<a,<q (r=1,...,m), (69)
for which the numbers Sdia; (j=1,...,k), (70)

are integral.
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9. In this section we consider the case when

p(X) = p(X) (r=1,...8),
and p(X) is non-negative. We obtain bounds for the terms in the sum (4) and for certain
groups of these terms. For convenience, we suppose that

p(X)<1 for all X,
and we write f p(X)dX = V.

We first obtain a bound for the integral -

m k—.m' m |
Iv; 43 C) = f - [TTpx) T p(gl ciin) X, ...dX,.

Write k, =20, (,r=1,..,m),
ky=6Crm (E=1,..,myr=m+1,..,k),
and Y, = gkirXi (r=1,...,k).
i=1
. ~ k :
Then 1v; 43 C) =f...an(Y,) dX,...dX,,.
r=1

Now, if 4, ..., 4,, is any selection of m distinct numbers from the numbers 1, ..., &, such that
the matrix
(kZA) (/1 - /11, oy /{m)

is non-singular with a determinant of absolute value D, then the equations
Z,= Zlkij,- (J=1,....,m)
=1 .

define a linear transformation in the mn-dimensional space of points (X, ...,X,,), with
determinant + D Thus

1v; u; C) =f TI(Y,) dX, .. dX,
| <f 116(2)) dX, ... X,

— D- f...f_ﬁlp(zj) dz,...dz,

_ p-rpm,
Thus we have I(v; u; C)<{M(C)} " Vm, (71)
where M(C) is the largest value taken by the absolute value of the determinant of one of
the m X m minors of the matrix (£;). But as this matrix is formed by combining the m x m

unit matrix with the matrix C, it is clear that M(C) will be the larger of the numbers 1 and
the largest value taken by the absolute value of the determinant of azy minor of the matrix C.

In particular, M(C)>max {1, | gli Iy €12l vos | Cmypom |}
= max{l,c},

so that I(v; u; C)<min{l,c"} ™. (72)
31-3
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We first consider the terms in the sum (4) with ¢>2. For a fixed ¢, the number of
matrices C with ¢<1 is at most
(g1 < e
So, by (46) and (72),

® N(C)\* ®
5 3 (N 105 45 0) < 3 gy e
q=2021 q =2
h < (§)mte=m=n+me= m)+2zq-—2Vm
(5)m(k m)2 an - (73)
provided n>m(k—m)+1.

For a fixed ¢>>1 and a fixed integer / with /> ¢, the number of matrices C with ¢ = [/q

is at most™ (21 1)mte=m) < (3])mte=m),
So, by (46) and (72),

5 (M) 103 0 €)= @y e,

c=llq
Thus % z (M_g))"l(v, 4 C)<(_g_)m(k—m) ym § [-n+m(k—m)
l=q+lc=cl'/q 1 tatl ) 1
< 8\m(k—m) [/m 1) —nt+mk—m)+2
(2) (q+ ) ls%ll(l_l)
<2( )m(k-—m) Vm(q+ 1) n+m(k m)+1
provided n=m(k—m)+2.
Hence, provided n>m(k—m) +2,

it follows that z > (N(C)) I(v; p; C)<2(8)mk—m Vmg(q—l— 1)-nmie=my+1
g=1cC g=1
c>1

< 2(_2_)m(k—m) Vm2—n+m(k~—m)+3 E 7—2
r=2
< 16(5)mE=m Q=n}m, (74)
Now consider the terms with ¢ = 1 and ¢ = 1. In such a term, we have N(C) = 1, and all
the elements of C are either 0 or --1. So the number of these terms is at most 3™*-m, So,

by (71), _
g=1, .
zﬂ <1, ],(-]&f)) 1(v; 4;C) < 3nte=m g=nm, (75)
Mm@E)>1]" ?

Combining these inequalities, we see that

S 3 i) =3[ Ly b 05 s 0+ RO 1,

g=1C
where 0<R(v; p) <21(5)mk=m 2-n]m

* Since a matrix C with ¢ = [/qg must have at least one element equal to +!/g, it follows that the total
number of such matrices does not exceed
2m(k —m) (20 + 1)m—m-1,
If this bound is used in place of the bound used above the same method leads to the conclusion that the
sum (4) converges provided n>m(k—m) +2, form=1, ..., k-1
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provided n>m(k—m)+2. Now the number of divisions (v; #) with a fixed value of m is
the binomial coeflicient k

k=1 /k
So S R(; p)< 3 ( )21(5)m<k-m> g-npm
()]
<21(5)frk212 "(V+1)k
Thus, provided n>m(k—m)+2,

the sum (4) can be written in the form

{p<0>}k+{fp<X>dX}+zz[[M(C)1 ]]f T (X) Tho(2 6. X)Xy .. dX,u Ry, (70

w;p) C v
where 0< R, <21(5)12-n( 4 1)k, (77)

It does not seem to be easy to obtain a good estimate for the integrals I(v; u; C) in the
case when ¢ = 1, M(C) = 1, without making further assumptions about the nature of the
function p(X). However, we can obtain crude upper and lower bounds for the contributions
from these terms, if we assume that p(X) is the characteristic function of a set which is
symmetrical in the origin. We always have

I(v; p; C)< V™,
Also, under our assumptions, I(v; u; C) =
if, for s = 1, ...,k —m, just one of the numbers

cls’ 023’ (RS cms

has the value + 1, while the others are zero. The number of matrices C with g = 1, M(C) = 1
is at most 3m(k—m)’

while the number of such matrices of the above type with
1(v; 45 €) =
is (2m)k-m,

when (v; 4) = (1,...,m; m+1,...,k). So, in the general case,

%[[M?cz)ilﬂ( ,Z( )) I(v; p; C) < gtb=mpm,

while for the special division

g=1, T(N( C)) P—
gl[M(C) L 1]]( ) 105 15 €)= (@mymn,
Thus, under these assumptions, the sum (4) can be written in the form

J+R,, (78)
where

—poy+ver s s 0o 1) THo(3 %) aX, ..ax,, (19)

w;pC
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248 C. A. ROGERS ON THE
and J; and R, satisfy
$ (em)E-mpn< J < z( )3m<k—m>Vm, (80)
m=0 8
0<R,<21(5)1#*12-n(V 4 1)k, (81)

10. In this section S will be taken to be a bounded set, not containing the origin, and
having Jordan content V. Take p(X) to be the characteristic function of S. Then

p(0) = 0, fp(X) dX = V.
So, when £ = 1, the sum (4) takes the form

p(O)+ [p(X)dX = 7,

and we have tim | . [ Ay et 0))day . da,_, =T, (82)

) o—>+0J 0 0 ) i
provided n>2. The object of this section is to obtain upper and lower bounds for the
corresponding limits (3) in the cases when £ = 2, n>>4 and k = 3, n>6; when £k = 3, n>6
we suppose for sake of simplicity that § is symmetrical in O.

When £ = 2 the integer m must have the value 1 and the only possible divisions are
(1; 2) and (2; 1). In each case the matrix C has just one element: in the first case, this may
be any rational number, p/q say; in the second case, it must be zero, by condition (6). So
the sum (4) takes the form

ooy ax)+ 3 3 () [o%) p(Ex) ax+ fo(x) (0) ax

g=1(p,)=1
S 5,3 (4 oo

But, as p(X) is the characteristic function of a set, we have
0<p(X) p(£X) <p(X),

0<p(X) p(LX) <p(X) it Ipl<q | (s3)

'0<p<X)p(§X)<p(§X) if |[p]>g.
Thus, the sum (4) can be written in the ‘form
Jo+ R,
where  J, = V2+fp(X) dX+fp(X)p(_X) dX = V24 V+fp(X)p(—X) ax,
and 0<R,<S 3 (l)f (X)dX+ 3 ( ) fp(l’x) dx.

=2(p, ) 1([ g=1(p,q)=1
Lb |p1>q
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Here the upper bound for R, can be rewritten in the form
oS 3 ey 3 (B —2vy 3 grrers s pe

g=21<p=<q ¢=1p=g+1\q/ \P q=2 1<p<q p=21<q<p
B, 9)=1 pra)=1 ' b,9)=1 (g, p)=1

— 4V§2¢(9) q"

_ [ ln=1)
e ondt
provided n>3. Thus, if n>3, ‘
0<R2<4V[§(z(;)1) —1:|.

It is worth noticing that, if S is the set of points other than the origin of a bounded sym-
metrical star set, then the results (83) hold with equality in the right-hand inequalities,
so that, in this case,

Jy+ R, =,V2+4V[€(’€’(;)1) —%}

It follows from theorem 1 that

lim fol...f:{p(A(a,,...,an_l,w))}zdal...da,,_l — V2 V—[—fp(X)p(——X) dX LR, (84)

w->+0

where 0<R2<4V|:€(Z(;)1) — 1] , (85)

provided n>>3, and the equality holds in the right-hand inequality of (85) when S is the set
of points other than the origin of a bounded symmetrical star set.

When % = 3, the number m may have the value 1 or 2. In each case C will be a matrix
with just two elements. We first consider the matrices C with ¢ = 1 and M(C) = 1. The
possible divisions and matrices (written as row matrices) are

(1;2,3): (0,0), 4(1,0), +(0,1), :1:(1, 1), +(1, —1);
(2;1,8): (0,0), £(0,1);

(3;1,2): (0,0);

(1,2; 3): (0,0), +(1,0), +(0,1), +(1,1), + (1, —1);
(1,3;2): (0,0), £(1,0);

(2,3; 1): (0,0).

So, in this case, assuming that S is symmetrical in O, the sum (79) becomes

Jy= V343 [p(X) p(+X) p(+X) dX+3 3 [p(X,) p(X;) p(X,) dX, dX,
+ 3 [[oX0) (%) p(£X,£X,) dX, aX,
= V367744 [p(X) p(X,) (X, +X,) dX, dX, + 4.

Thus, provided 7> 6, the limit

1 1
lim f f (A (e o,y )P dey ... da,
0 0 : :

w—>+0
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250 C. A. ROGERS ON THE
exists and has the value |

V3+6V2+4ﬂp ) p(X)p(X, +X,) dX, dX, +4V+R,, (86)
where, by (81), 0< R, <525(V+1)° (3)". (87)

Here one has trivially
0< [[p(X,) p(X,) (X, +X,) X, dX,< V2. (88)

11. This section uses the results of the last section to give the following

Proof of theorem 4. We suppose that there is no lattice with determinant 1, which has no
point in S. Then by the symmetry of S, every lattice with determinant 1 has at least two
points in S. So, if p(X) is the characteristic function of the set .S, we have

p(A(oy s 0,1, 0)) =2
for all ¢, ...,,_, and @>0. Thus

1l
limf f {p(Alay,...,a,_,0)) —2}da, ... da,_,; >0.
0

w—>0 1]

Hence, by (82), V—2>o0,
and V>2.
Buta Writing p= p(A(ala sy Xy (1))),

for simplicity, it is clear that

1l
lim f f {p—2}{A+up}?de, ... da,_, >0.

w—>+0
So, writing, = lim f f pday ... de,_
w—>+0
we have (11— 2p9) A2+ 2(py— 21y ) Ape+ (3 — 2p15) 12> 0,

for all real A, . Consequently

(ey —2p0) (13— 2p10) — (4 —201,)* =0
Now, by (82), (84), (85), (86), (88) and (87),
=1,
m="V,
Yo = V2+2V+R,,
U < V3+10V24+4V+R,,

where O<R2<2V|:2—§(g(—-~;;l) —2] ,} (89)
0<Ry<525(V-+1)3 (3"
Thus =2 = V—2,

ta—2 = V24 Ry,
Hs— 2ty < V3 +8V?+ Ry,
as R,>0. Consequently, since V'>2,
(V—2) (V3+48V2+R;) — (V24 R,)%2=0.
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'This implies that
(V—2) (V34+8V2+4R;)— (V—2) (V342V?%) —4V2>0,
so that V=24+4V?[6V2+4R,]!
_ 9.2 Ry 7!
—2+§[1+ o7

But we have assumed that V'<2+-%£ and proved that V>2. Hence, by (89),
Ry _525(V+1)° . 525 (33)°

B——VZ 6 V2 (%’)n 6 (2%)2 (%)n<633(%)n’
} d (V+1)3 ]
since av T >0 if V=2
Thus V=2+2[14-633(3)"],

contrary to our hypotheses. This contradiction proves the theorem.
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